(w/2-2)w=63^2

Simple and best practice solution for (w/2-2)w=63^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (w/2-2)w=63^2 equation:



(w/2-2)w=63^2
We move all terms to the left:
(w/2-2)w-(63^2)=0
Domain of the equation: 2-2)w!=0
We move all terms containing w to the left, all other terms to the right
-2)w!=-2
w!=-2/1
w!=-2
w∈R
We add all the numbers together, and all the variables
(w/2-2)w-3969=0
We multiply parentheses
w^2-2w-3969=0
a = 1; b = -2; c = -3969;
Δ = b2-4ac
Δ = -22-4·1·(-3969)
Δ = 15880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15880}=\sqrt{4*3970}=\sqrt{4}*\sqrt{3970}=2\sqrt{3970}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3970}}{2*1}=\frac{2-2\sqrt{3970}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3970}}{2*1}=\frac{2+2\sqrt{3970}}{2} $

See similar equations:

| __34x=__18 | | 3(2t+2)=(t+1)6 | | 8y-7=7y-5 | | 6^(3x-9)-10=-3 | | 7(5v+4)=7(7v-4) | | 6.3=1.8(5x-1) | | 4(x+3)+21=4(2x-6) | | (4k/9)=2 | | 8+8(b-8)=7(2b-2) | | 1.6(y-5)=24 | | 8x-15x-30x-51×=53+31x-172 | | 7x(4x-9)=26+6x | | 33.06=-3(2.9x-2.9) | | 12x+7=11x+17 | | x^2-0.1x+0.6=0 | | 2.5x+1.5=6 | | -2w-12=8(w-9) | | -22-x=5=6x+9 | | 6e-1=-6-6e | | -3(x+2)-7=26 | | 0.5a+0.7a=48 | | -3n=14-5n | | 3+3.1x=13.075 | | 3+3.1x=523/40 | | 8(p+1)=20 | | -3(3p-5)=4(2-4p) | | 15.16h+0.12=15.91+0.11 | | 2(1+3r)+4=4(r-3) | | 11/20=x/60 | | 2x+10+4×-36+4x-34=180 | | 11x+3-6x=15 | | 6+3p=5p+1-3 |

Equations solver categories